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I N T R O D U C T I O N  

Development  of a theory  for  the combust ion  of gaseous  mix tu re s  in a turbulent  s t r e a m  is usual ly  a s s o c i -  
ated with the model ing of the p r o c e s s  on the bas is  of ce r t a in  pa r t i cu la r  assumpt ions  [i]. At the s a m e  t ime ,  in 
the hydrodynamics  of nonreac t ing  flows a method for  the s ta t i s t i ea l  ave rag ing  of the Navier  - Stokes equations 
is being suceess fu l ly  developed.  The r e su l t i ng  co r r e l a t i on  momen t s  of the s e c o n d - o r d e r  hydrodynamic  quan-  
tE ies  a r e  not d i rec t ly  r e l a t ed  to the ave r age  flow p a r a m e t e r s ;  for  these  it is n e c e s s a r y  to se t  up equations 
which a r e  s im i l a r  in s t r u c t u r e  to conserva t ion  laws. Although the h i g h e r - o r d e r  moments  which then appear  
again r equ i r e  the use of phenomenological  hypotheses ,  the chain of t w o - m o m e n t  equations cons t ruc ted  in this 
way does desc r ibe  a number  of qual i ta t ively  new effects .  The fundamenta ls  of this approach  w e r e  laid down by 
A. N. Kolmogorov and have now been widely developed by Soviet and other  sc ien t i s t s  (see,  for  example ,  [2] and 
the r e f e r e n c e s  ci ted there in) :  Solutions have been cons t ruc ted  with a sma l l  number  of empi r i ca l  cons tants  to 
give s a t i s f ac to ry  quali tat ive descr ip t ion  of a turbulent  flow. A s imi l a r  approach  to this  is used in [3] to de-  
s c r ibe  a chemica l  r eac t ion  with a l inear  source  of heat  (concentration) and in [4] for  t h e r m a l  t r a n s p o r t  p rob -  
lems .  The effect  of nonlinear heat product ion with al lowance for  pulsat ions in t e m p e r a t u r e  and concentra t ion  
in the z e r o t h - o r d e r  s ta tement  of the p rob l em is studied in [5]; the applicat ion to a s m a l l - s c a l e  turbulent  f l ame  
is cons idered  in [6-9]. In these  las t  pape r s ,  the f l ame-p ropaga t ion  equation is c losed  by using the phenome-  
nology of the Prandt l  d i sp lacement  path; a method of averag ing  the nonlinear t h e r m a l  product ion function is 
proposed.  In [10] the equation for  the turbulent  ene rgy  balance is used to study the level  of turbulence  in a 
f l ame  where  the Prandt l  hypothesis  is a lso  used for  the t e m p e r a t u r e  pulsat ions.  In the p re sen t  paper ,  the s t a -  
t i s t i c a l - p h e n o m e n o l o g i e a l  method is extended to the p rob l em of the turbulent  combust ion of mixed gases .  The 
pr inc ipa l  emphas i s  is on s tudying the effect  of the chemica l  r eac t ion  on the t h e r m a l  exchange in the f l ame  and 
the r e v e r s e  effect  of the turbulence  on the r eac t ion  r a t e  and hence on the turbulent  combust ion  r a t e .  Approxi-  
mate  e s t ima te s  of these  effects  a r e  given. 

w 1. The p resen ta t ion  given below is based  on the following s impl i fy ing assumptions.* i) the hydrodynamic  
f ie ld of the ave r a ged  (ui(xi ,  t)), (p(x i, t)) and pulsat ing u~(xi, t),  p ' (xi ,  t) motions is known; 2) the med iu m is 
i ncompress ib l e ,  p =const ;  3) a s i ng l e - s t age  exo thermic  r eac t i on  takes  place in the flow in accordance  with the 
equation nA -~B at  a r a t e  ~ (T, 7) and with ca lor i f ic  value Q > 0 (n is the o rde r  of the reac t ion ;  A is the initial 
substance;  B a r e  the reac t ion  products ;  T is the t e m p e r a t u r e ;  and 77 is the r e l a t ive  concentra t ion  of the r e a e -  
t lon products  or  the degree  of combustion);  4) the molecu la r  t r a n s p o r t  coeff icients  a r e  independent of the flow 
p a r a m e t e r s  and they a r e  subjec t  to the equations u = ~ =DAB (v is the v iscos i ty ;  ~ is the t h e r m a l  conduct ivi ty;  
and D is the diffusion); 5) we cons ider  the usual slow combust ion  conditions when we can neglect  the p r e s s u r e  
gradient  and the v iscous  diss ipat ion heat  in the f l ame  in compar i son  with the heat developed by the chemica l  
reac t ion ;  and 6) the back  r eac t i on  of the f l ame  on the hydrodynamics  of the flow (ui)  , u~, p is not taken into ae -  
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TABLE 1 

I o)t/o~ ~ o~t/o), 
F (5.'D (4.S)--(t~.li) 

t I 1,00 1,0t 
2 ] t,03 1,04 
3 ' 1,t7 1,t2 
4 1,38 t,33 

count. Es t imates  show [10] that this back effect  is smal l ,  so that the intensity b = <uiuj>/2 and the macrosca l e  
L of the turbulence can se rve  in the f i r s t  approximation as p a r a m e t e r s  of the p rob lem (repeated indices imply 
summation).  

With these  assumptions  we can use the following sys t em of equations (in r e a l  units): 

Ou~/Ox~ = O; 

Oui/Ot + u~Oui/Ox z = --p-~Op/ax~ + va2ui/Ox~axj; 

aT/Ot + ujOT/Oxj = vO2T/OxjOxj + (Q/cp)r rl); 

O~l/Ot + ujOn/Oxj = vO~rl/OXjOX~ + r  ~l). 

(1.1) 

(1.2) 

(1.3) 

0.4) 

The express ion  

T = T+ -- (Q/cp)T t or  T := T+--(T+-- T--)~I (1.5) 

is one par t icu la r  solution of (1.3) and (1.4). The subscr ip t  "-',.~ is used to denote quantit ies r e f e r r i n g  to the 
final products  of the combust ion and " - ,  is used for  the original  mixture .  In combust ion problems (1.5) also 
sa t i s f ies  the boundary conditions and is t he re fo re  the f i r s t  integral  of (1.3) and (1.4). In what follows we con-  
s ider  only this case  so that we can take the r e a c t i o n - r a t e  function r to depend on t em p e ra tu r e  alone. 

We divide the actual quantit ies Luto average  and pulsating par ts  (T = < T> +T ' ,  u i = (ui> + u~, and so on) and 
we apply the Reynolds averaging operat ion to (1.3), so that with the help of (1.1) we get 

a<u~T'> (O/~p)< r (1.6) OT/at + <uj)a<T)/axj = va2<T>/axjax~ azj + 

The application of the averaged  t he rma l  balance equation to the study of a turbulent  f lame is complicated 
by the p resence  of tmlmown quantit ies:  the moment  < uiT'> and the average  heat -product ion function <r (T)>. 
For  these  we have to e i the r  use empi r ica l  connections (see, for  example ,  [6-9]) with the average  values or  
wr i te  out the balance equations which descr ibe  thei r  variat ion.  

! 

The equation for  the moment < uiT'> is 

a < . ; r ' > l a t  + < . ,  a + < . ; - } >  a <r>la   - -  

- -  v8 = <u;T'>/Sx.~Sxj + < . . }T '>  a <u,>/ax~ -F 2v <(au~/~xj) (~T' /axj )> - -  

- -  p-' <p'ar'/axo + O<u}(u;T')>/Oxj-}-p-iO<p'T'>/ax~ = (Q/cp) \ui .~)/ .  / " \ (1.7) 

As in [4, 11], we c lose  the sy s t em (1.7) by means of the following phenomenologieal  hypotheses:  

p--t <p'OT'/Ox,> = - -  c,V-6/u'iT'>JLa; (1.8) 

2v <(au;/Ox~) (OT'/Oxj)> = --- c2v <u ;T '> /L2 ;  (1.9) 
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o ( = o ( DqO (1.10) 

In these  equations Lq r e p r e s e n t s  the scale  of the v e l o c i t y - t e m p e r a t u r e  co r r e l a t ion  and it may  differ f rom the 
hydrodynamic Lb; b is the turbulence energy per unit mass  and the ci a re  coeff icients .  

The turbulent  diffusion coefficient  Dq cannot in general  be identified with the diffusion coefficient  of the 
pulsation kinetic energy  Db .~ LbV-~ since Dq can depend on the nature  of the chemica l  heat-product ion pro-  
cess .  

The t e r m  -p -10  < p 'T '}/0x i is usually connected with the t r anspor t  of energy  in a nonuniform t empera tu re  
f ield by the p r e s s u r e  pulsations.  It is probably important  near  the walls and is c ru i sed  in the t r ea tmen t  which 
follows. 

Final c losure  of the sy s t em of equations r eq u i r e s  us to set  up the balance equation for the t empera tu re  
pulsat ion <T t2) [this quantity occurs  in (r  and <u]r 

o/ . '~ , \  0 <T'")!Ot -J- <u~> 0 <T'~>/Ox~ 9- ~\**j~ / 0 <T)/Oxj - -  

--  vO2<r'2)/Ox~Oxj 9- 2v <(OT'/Ox~) (or'/Oxj)>-}-O <u~T'~ = 2 (Q/cp)(T'ag). (1.11) 

In a s imi la r  way we get 

2v((OT' /Ox~) (OT' /Oxj)> = --  %V-b <T'2)IL(~ --  c v i T " \ / Z ~ ;  (1.12) 4 \ / 

a/z*jT'2)/Ox; = 0 (D~O /T'2)/Oxj)/Oxj, (1.13) 

where  L~ is the t e m p e r a t u r e  scale  of the turbulence and D a is the turbulent  diffusion coefficient  of the t em-  
pe ra tu re  pulsations.  

w In o rde r  to de te rmine  the quantities <r (T)}, <T'r and < u~O) , which appear  on the r ight  s ides of 
(1.6), (1.7), and (1.11), we have to know the probabil i ty  distr ibution functions of the t em p e ra tu r e  (velocity) 
pulsations. 

Since no re l iab le  data exist  on the f o r m  of this function, we have to s t a r t  f r o m  the s imples t  pulsation 
s t ruc tu re  and assume  that posi t ive and negative pulsations T' with amplitude ]f<T'2> ' a r e  equally likely. This 
means that the probabil i ty dis tr ibut ion function can be wr i t ten  as 

P ( r ' )  = 2-~[6(, ~' + V<T'~>)+5(T ' -- V<T'~))I, (2.1) 

where  5 (...) is the Dirac delta function. 

The choice of this pa r t i cu la r  function makes our approach s imi la r  to the a r i thmet ic  averaging technique 
used in [6-9]. 

In fact ,  we have f r o m  (2.1) 

<(1) (T)> = y q)((T) + T')P (T')dT' = [(1) ((T> 9 - V ~ )  -~(1) (<T> -- V<-TV~ )] /2. (2.2) 

In a similar way, we get for the moment <Tr 

<r ' r  = ~ T ' r  (<r> + T')P (T') dT' = ~ [r (<T> + V ~  -- r (<T) - V ~ ) ] / 2 .  (2.3) 

We can calculate  the moment  < u [~ ) f rom the equation 

= (r  (<r> + (r,) p. ( . ;r')  

where  the functions 1)i and 1) 2 a r e  chosen to depend on the moments  which contain the t empera tu re  pulsat ions,  
so that we finally get a r i thmet ic  averaging,  and in the l imit  when # <T '  2) << ( T )  , 

<u~r  = ( . ~ r ' >  [r (<r> - V < - ~ )  - r (<r> - V ~ ) ] / 2 V  <r">. (2.4) 

In par t i cu la r ,  for  smal l  lfl<T'2> <<<T> we get the following expansions f r o m  (2.2)-(2.4): 

<Up(T)> = (I)(<T)) 9- <T' ~>d 2 (I)(<T>)/2d<T '2) 9 -O(T '  a); (2.5) 

<T'(1)> ---- <T' 2}d~((T>)/d<T> + o(<T' 4>); (2.6) 

/.,u~a)/" \ = (dr  9- O( <u~T'a>). (2.7) 
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We might note that these  same approximations [to the accu racy  in (2.5)-(2.7)] also follow d i rec t ly  f r o m  
the expansions of the functions r ((T} +T*), T ' r  (< T} +T'), uiTr +T')  into s e r i e s  in powers of T T and sub- 
Sequent Reynolds averaging.  This r e su l t  is valid for  any probabil i ty distr ibution function. 

The deviation of the average  reac t ion  ra te  f r o m  the value at the mean t em p e ra tu r e  is governed according 
to (2.5), mainly b y t h e  curva tu re  of the function r (( T} ). This fact ,  which was noted in [8], is i l lustrated in Fig. 
1 with a typical  r (T) re la t ionship  for  a f i r s t - o r d e r  reac t ion  (curve 1 is the t em p e ra tu r e  pulse; 2 is the pulsa-  
tion of the reac t ion  ra te ;  3 is the heat production in the laminar  case;  and 4 is the averaged heat -product ion 
curve).  When the reac t ion  is pe r tu rbed  in the h igh- tempera tu re  region (T+ --  T_ <<T+) d ~ ( ~ / d i T )  2 ~ O, the 
average  reac t ion  r a t e  becomes sma l l e r  than the r a t e  at the mean t empera tu re .  In the t e m p e r a t u r e  region 
where  d2O/d( T}2> 0, the opposite effect occurs .  Of cour se ,  continuous var ia t ions of t em p e ra tu r e  dis tor t  both 
the r ( (T>)  profi le  (in compar i son  with the laminar  case) and the f lame s t ruc ture .  The ene rgy  re la t ions  (1.7), 
(1.11) and (2.6), (2.7) show that the chemical  reac t ion  generates  t em p e ra tu r e  (and t h e r e fo r e  (uiT ' ) )  pulsations 
in the t empera tu re  interval  where  the heat production increases  and absorbs  them in the final stage of the r e -  
action where  as a r e su l t  of the burning of the original  components the reac t ion  r a t e  d ec r ea se s  with t empera tu re .  
Quantitative es t imates  of this effect  a re  given below. 

Equations (1.6), (1.7), and (1.11) together  with the c losure  express ions  (1.8)-(1.10), (1.12), (1.13), and 
(2.2)-(2.4), fully descr ibe  the chemica l  r eac t ion  p rocess  in a turbulent  flow of mixed gases.  The s ta t i s t ica l  

? ! 
moments  which contain only the veloci ty  ( uiu j} and the turbulence scales  Lq and L a a re  assumed to be 
known functions of the coordinates  and t ime.  ~ is possible to set  up equations for  these  quantit ies;  a method 
for  getting the equation for  the sca le  is suggested,  for  example,  in [12]. 

We do not e labora te  he re  on the concept of the quantity L, although it is f a i r ly  c lea r  that for  the flow cen-  
t e r  in a tube, L is propor t ional  to the outer  scale  of the turbulence,  i .e . ,  to the d iameter  of the tube. In the 
study of boundary- layer  flows the significance of L might change [13]. 

It is important  to note that the coeff icients  el ,  e2, c3, and e 4 which occur  in the fac tors  in f ront  of l.q and 
La  a re  de termined  by exper iments  and this to some extent compensates  for  the fact  that the exact  values of 
l.q and L(r a r e  unknown. 

When there  is no s imi la r i ty  between the concentra t ion and the t e m p e r a t u r e  it becomes n e c e s s a r y  to set  
up additional equations for  the s ta t i s t ica l  moments  ( 77,2>, (v 'T ' ) ,  (u~?') .  

w 3. Consider ing the s imples t  case  of a s ta t ionary  flow where  ( u l) =u =const ,  ( u 2) = ( u3> = 0, (T)  = ( T(x)}, 
we a r r i ve  at equations which descr ibe  a one-dimensional  model  of a turbulent  f lame (the analog of a normal  
flame). This case  occurs  in tubes (or beyond vor tex  plates) in the flow core  where  the walls have no effect and 
in ce r ta in  other  si tuations of f r e e  turbulent  flow. 

In a coordinate  sys t em linked to the combustion su r face ,  the quantity (u  1) is s imply the veloci ty  of the 
turbulent  propagation of the f lame u t. In the more  general  case  where  the f lame is c a r r i e d  by the flow, the 
value of < u l) =u +ut, where  u is the constant "drif t"  velocity.  However,  even here  the average  veloci ty  u can 
be el iminated by an appropr ia te  t r ans format ion  of coordinates .  It is an important  fact  that in this approach no 
r e s t r i c t i ons  a re  placed on the magnitude of the flow pulsation energy  in compar i son  with the turbulent  combus-  
tion r a t e ;  i .e. ,  4bcanbe  e i ther  g r e a t e r  or  less  than u t and the level  of the turbulence remains  small  compared  
to the main flow, Vb<< (u~). 

These  assumptions lead to the following sys t em of equations for  the turbulent  f lame propagation: 

d(• - -  q)/Ox - -  u tdT /dx  ~- ( Q / c p ) O , ( T ,  IT'D -- 0; (3.l) 

DqdO'q/dx~ - -  zttdq/dx = I u '2 ]dT/dx  + clV'bq/Lq - -  (Q/cp) (I)** (T, I r ' l )  q; 

O(L~-/8 2) O ( L / 5 )  O(i) 0 ( t )  O(xlq/vx)  

(3.2) 

D(jd 2 <T'Z>/dx 2 - -  utd ( .T">ldx = 2~clT Idz  § caV'b Ir'12/L,~ - -  (2Q/cp) r  (T, IT'  I) IT' l l ,  �9 

o (L~/5 ~-) 0 (L/6) 0 (l) 0 (l) 0 (~i./~) 

(3.3) 

where  the o rde r  of each t e r m  is shown beneath that t e rm.  

In o rde r  to s implify the wri t ing we omit the averaging sign and introduce the following new notation: 

6 5 2  



= = / p t V<u' 2> lu'l, q ,.u r ), IT'I = l /<T'2) ,  
2(I), = ~ (T + IT'D + r (T - - I T '  D, 

2(I)** = a) (T + 1T't) - -  * ( T - -  IT'l); 

"qq= Lqlc~] /~  ~:~ = L~Ic~V b a r e  the c h a r a c t e r i s t i c  hydrodynamic  t imes  (the t ime  for  the d i sp lacement  of 
l a rge  moles) ;  ~x is the c h a r a c t e r i s t i c  t ime  of the chemica l  reac t ion .  Equations (3.2) and (3.3) a r e  val id only 
for  the flow co re ,  where  

• << i, • c~• <<l, c4zlc3LoV"b << i .  (3.4) 

The quantity x in (3.1) is r e t a ined  for  the poss ib le  l imi t ing  t rans i t ion  of the combust ion  in a l amina r  flow. 

In the in te rmedia te  l ayer  of the boundary flow (or in the v iscous  subflow), the inequali t ies (3.4) a r e  not 
sa t i s f ied  and additional f ac to r s  appear  in (3.2) and (3.3): in place of Dq we have to wr i t e  Dq(1 + ~/Dq) ,  in place 
of c 1 we have c1(1 +c2x/clL q Wb), in place  of D e we have D~(1 + ~ / I ) a )  and in place  of c 3 we wr i t e  c3(i + 
c ~x/c~L~VY). 

The contr ibut ions of each t e r m  to the ene rgy  balance of the T '  and uVT T pulsat ions a r e  c h a r a c t e r i z e d  by 
the r e l a t i ve  s i zes  a t tached to these  t e r m s  in (3.2) and (3.3). A significant change in the var ious  quanti t ies oc -  
curs  at a d is tance on the  o rde r  of the width of the t u rbu l en t - f l ame  front  6,  and it is m o r e o v e r  a s sumed  that  
D~ ~,. LV~, D b ~ D q  ~ D a ,  u t~uv  [this choice of u t gives an upper e s t ima te  of the second t e r m s  on the left  s ides  
of (3.2) and (3.3), q ~ LW-bdT/dx ~ LV-bT+/5,  L..m. Lq ~ L8 ]. 

w 4. We cons ider  the case  of turbulent  combust ion  when L<< 5. For  s m a l l - s c a l e  turbulent  combust ion,  5 
can be cons ide rab ly  g r e a t e r  than the co r respond ing  width of a l amina r  f l ame  6 0: The extension of the turbulent  
f l ame  is caused by the inc reased  heat  t r a n s p o r t  and an addit ional extension ( f i r s t - o r d e r  react ion)  by the shift  in the 
m a x i m u m  of the heat product ion toward lower t e m p e r a t u r e s  [7]. The s a m e  is t rue  for  the c h a r a c t e r i s t i c  r e a c -  
t ion t ime  ~x: In a turbulent  f l ame  vx  can g rea t ly  exceed T + - t h e  reac t ion  t ime  at the m a x i m u m  t e m p e r a t u r e  
and the initial concentra t ion.  

It can be seen  that  for  the p resen t  p r o b l e m  the t r a n s p o r t  of pulsat ion energy  by turbulent  diffusion and 
convect ion is unimpor tant ,  so that  an ene rgy  balance is set  up between the c rea t ion  of f luctuat ions at the g r a -  
dient of the a v e r a g e  t e m p e r a t u r e ,  the diss ipat ion,  and the genera t ion  (absorption) by the chemica l  r eac t ions .  

Dropping the unimportant  t e r m s  in (3.2) and (3.3), we have 

lu'12dTIdx - -  (Qlcp)qap** ( T,] T'I)II T'J + c~V-EILq = 0; (4.1) 

qdT/dx - -  (Qlcp)] r'12(I) ** ( r , I  r ' l )  + (c3V'612L,~)I T'I: = 0 .  (4.2) 

If the sca les  and coeff ic ients  of the turbulence  a r e  r e l a t ed  by the equat iont  

2clLa = c3Lq, (4.3) 

then a change in I Tt] is s i m i l a r  to a change in q: 

q = - -  lu'] IT' l . (4.4) 

The minus sign is chosen because  the turbulent  t h e r m a l  conductivi ty is posi t ive.  

The f l ame  propagat ion  ks desc r ibed  by Eqs.  (3.1), (4.2), and (4.4); a f te r  some  s imple  a lgebra  these  can be 
t r a n s f o r m e d  to 

dlT' l /dT = utllu,r - q).(T,IT'I)/[lu'IcoIT'I/LQ --  q)** (T,1T;I); (4.5) 

IT'I(T+) = 0, IT'I(T-) = 0; (4.6) 

dT/dx  = IT'IIL - -  (Q/cplu'l)q)** (T,IT'I). (4.7) 

The solution of the boundary-va lue  p rob lem (4.5), (4.6) gives the turbulent  combust ion r a t e  u t and (4.7) 
gives the t e m p e r a t u r e  dis t r ibut ion profi le .  

In o rde r  to c o m p a r e  our r e s u l t s  with those  in [7-9], we r e f o r m u l a t e  (4.5)-(4.7) in d imens ion less  va r i ab les :  

dpldu = r  p) /[p + Fo (D**(u, p ) l - ( o r ;  (4.8) 

~The t r e a t m e n t  of the m o r e  genera l  ca se ,  where  (4.3) is not sa t i s f ied ,  does not p re sen t  any fundamental  dif- 
f icul t ies  and leads only to a m o r e  compl ica ted  f inal  r e su l t .  

653 



P(0) = P(z) ~ O; 

f du . = - -  p+Fo~**(u ,p) '  
0 

2@ (**) -= (u  + FOP)" exp[--0 o (u  + FoP)l ( i  - -  o (u + Fop)) l + (u  - -  F o p ) ,  exp [ - -  0 o (u  - -  F o P ) / ( l  - -  (~ (u  - -  FOP)) ] 

for  O__u_<e; when e < u < l , r  (the ' + "  sign is chosen for  O ,  and t h e " - "  s i g n f o r  0 , , ) .  

The re la t ion  between the dimensioned and d imens ion less  quanti t ies  is 

u = (T+ - -  T ) / ( T +  - -  T _ ) ,  p = ]T ' I /Fo(T + - -  T _ ) ,  

0), ---- u t ] / '~+/Lu '  ' 

�9 + = pZ-'z-Zexp ( E / B T + ) ,  x o =~f~u']~+, ~ = x / x  o, 

F o = n / x  o =V'Vl/T+, Tz = n/Ju'J, 

= l - r _ / r + ,  00 = E ( r +  - -  T _ ) / R T ~ .  

(4.9) 

(4.10) 

(4.11) 

The sca le  L is p ropor t iona l  to Lq, 

L = Lqlcxcs,  

where  the coeff icient  c 5 al lows for  a poss ib le  hydrodynamic  an i so t ropy  in the flow, b = % l u '  I 2. For  an isot ropic  
flow c 5 - - - ~  The ave rage  value c 1 ---2.5 has been de te rmined  for  a nonreac t ing  flow [13]. In o rde r  to make 
the c o m p a r i s o n  with the e a r l i e r  r e s u l t s  we have to r e m e m b e r  that  F o = F / V ~ a c s  ~ F / ] / ~  

w 5. We cons ider  the l imi t ing  case  ]T ' I<<T,  where  we can come to some  definite quali tat ive conclusions.  
Using the expansion (2.6) and Eq. (4.3) we get the gradient  r ep r e sen t a t i ons  

q = <u' T'>== --LJu 'J  [1 - -  (Q'q/cp)d(I) /dT ]-ZldT/dxJ; (5.1) 

]T'J = L [i --  (Q'q/cp)dffP/dT ]-ZIdT/dx  I. (5.2) 

In the absence  of any chemica l  r eac t ions  (or when T1/~x<< 1) {5.1) and (5.2) give the c l a s s i ca l  r e s u l t  of 
d i sp lacement  path theory .  The p r e s e n c e  of chemica l  heat  product ion i nc rea se s  the turbulent  t h e r m a l  conduc-  
t iv i ty  xt  in that reg ion  of the f l ame  where  d@/dT > 0 and d e c r e a s e s  it in the f inal  s tages  of the r eac t ion  when 
the quantity d@/dT (see Fig. 1) has  changed sign. The quantity 0 . .  in (4.8) r e f l e c t s  the ro l e  of the chemica l  
r eac t i on  in the t h e r m a l  exchange inside the f lame.  

An approx ima te  e s t ima te  of this  effect  on the turbulent  combust ion  r a t e  can be obtained f r o m  (4.8) by 
neglect ing the influence of the t e m p e r a t u r e  pulsat ions on r  L After  in tegrat ing (4.8) by the ZePdovich method 
we have for  a f i r s t - o r d e r  r eac t ion  that 

l 

0) 2 u e - e , "  du .  (5.3) 
2 )  t + 3--1F2(1--Oou) e -O~ 

0 

Making a power expansion of (5.3) and c a r r y i n g  out the integrat ion,  we get 

o)~/0) o ~" ~/1 + F4/3 5, (5.4) 

where  o 0 = V 2 1 0  o is the l amina r  combust ion  ra te .  Equation (5.4) is valid when 

F < e V 3 ~  4,7, T1/T+ ~ 7.29. (5.5) 

The l imi t  (5.5) r e p r e s e n t s  an e s t ima te  which is val id for  [ T '  [<<T. In genera l ,  it cannot be a t t a ined :  As 
L i n c r e a s e s ,  t he re  is a r i s e  in the t ime  for  comple te  r eac t ion  re su l t ing  f r o m  the dis tor t ion of the h e a t - p r o d u c -  
tion pulsat ions .  Table  1 gives the r e s u l t s  of ca lcula t ions  f r o m  (5.4) c o m p a r e d  with those  obtained f r o m  (4.8)- 
(4.11). In us ing (4.11) we have neglected the effect  of t e m p e r a t u r e  pulsat ions  on ~ .  and have r e p r e s e n t e d  r  
in the expanded f o r m  as  valid for  FoP << 1, as  in (2.6) and (2.7). 

It is n e c e s s a r y  to dis t inguish between s m a l l - s c a l e  f l a m e s  in f r e e  and bounda ry - l aye r  turbulent  flows (in 
the l a t t e r  c a se  it is n e c e s s a r y  to allow for  the dependence of L on the d is tance  f r o m  the wal l ,  the va r i ab i l i ty  of  
the lu ' ]  pulsa t ions ,  and so on). Moreover ,  in the study of the turbulent  combust ion  in the bounda ry - l aye r  r e -  
gions (which in p r ac t i ce  means  in the in te rmedia te  reg ion  of the boundary l aye r  [14, 15]) we cannot neglect  the 
quantity u / L V ~  in c o m p a r i s o n  with unity. 
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C E R T A I N  F O R M U L A T I O N S  OF 

O P T I M I Z A T I O N  P R O B L E M S  IN 

V. G. D u l o v  

T H R E  E - D I M E  NSIONA L 

H Y P E R S O N I C  A E R O D Y N A M I C S  

UDC 533.6.011:51.55 

The fundamental configuration of a prospective hypersonic a i rcraf t  in which the active balance of forces 
is created by a direct-flow air-breathing jet engine in liquid hydrogen with supersonic combustion is dictated 
by its specific ftmctioning conditions. Thus, in order  to ensure the intake of air f rom the atmosphere during 
flight in a raref ied  medium the air-intake sys tem should have a reasonably wide capture area,  which will in 
fact differ very little f rom the middle cross  section of the whole aircraft .  The nozzle (second element in the 
engine system) should also have large dimensions. These engine elements should make a specific contribution 
to the aerodynamics of the aircraf t  as a whole; they are  character ized by large areas immersed in the flow, on 
which the function of carrying surfaces will to a certain extent be imposed. Hence we have the necessity of 
asymmetry  in the configurations of such surfaces and the associated essentially three-dimensional character  
of the perturbed flow. 

Let us consider the following presentation of the fundamental problem: in a three-dimensional space we 
have two specified a rb i t ra ry  closed contours l i and 12 (Fig. 1); the isobars of the unknown flow are based on 
these contours, the pressures  on the latter being specified as pi and P2, respectively.  It is required to find the 
s t ream surface passing through both contours and optimizing a certain integrated force character is t ic  of the 
tmknown surface. The problem is made specific by giving the functional of the mechanical (force) action. 
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