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STATISTICAL - PHENOMENOLOGICAL APPROACH
TO THE DESCRIPTION OF TURBULENT FLAMES

V. N. Vilyunov and I, G. Dik UDC 536.46 :533.6

INTRODUCTION

Development of a theory for the combustion of gaseous mixtures in a turbulent stream is usually associ-
ated with the modeling of the process on the basis of certain particular assumptions [1]. At the same time, in
the hydrodynamics of nonreacting flows a method for the statistical averaging of the Navier — Stokes equations
is being successfully developed. The resulting correlation moments of the second-order hydrodynamic quan-
tities are not directly related to the average flow parameters; for these it is necessary to set up equations
which are similar in structure to conservation laws, Although the higher-order moments which then appear
again require the use of phenomenological hypotheses, the chain of two-moment equations constructed in this
way does describe a number of qualitatively new effects. The fundamentals of this approach were laid down by
A. N. Kolmogorov and have now been widely developed by Soviet and other scientists (see, for example, [2] and
the references cited therein): Solutions have been constructed with a small number of empirical constants to
give satisfactory qualitative description of a turbulent flow. A similar approach to this is used in [3] to de~
scribe a chemical reaction with a linear source of heat (concentration) and in [4] for thermal transport prob-
lems. The effect of nonlinear heat production with allowance for pulsations in temperature and concentration
in the zeroth-order statement of the problem is studied in [5]; the application to a small-scale turbulent flame
is considered in [6-9]. In these last papers, the flame-propagation equation is closed by using the phenome-
nology of the Prandtl displacement path; a method of averaging the nonlinear thermal production function is
proposed. In [10] the equation for the turbulent energy balance is used to study the level of turbulence in a
flame where the Prandtl hypothesis is also used for the temperature pulsations. In the present paper, the sta-
tistical — phenomenological method is extended to the problem of the turbulent combustion of mixed gases. The
principal emphasis is on studying the effect of the chemical reaction on the thermal exchange in the flame and
the reverse effect of the turbulence on the reaction rate and hence on the turbulent combustion rate. Approxi-
mate estimates of these effects are given.

§1. The presentation given below is based on the following simplifying assumptions: 1) the hydrodynamic
field of the averaged {uj(xi, t)), (p(x;, t)) and pulsating u{(xi, t), p' (xj, t) motions is known; 2) the medium is
incompressible, p =const; 3) a single-stage exothermic reaction takes place in the flow in accordance with the
equation nA —B at a rate & (T, n) and with calorific value Q> 0 (1 is the order of the reaction; A is the initial
substance; B are the reaction products; T is the temperature; and n is the relative concentration of the reac-
tion products or the degree of combustion); 4) the molecular transport coefficients are independent of the flow
parameters and they are subject to the equations v =n =Dpp (v is the viscosity; v is the thermal conductivity;
and D is the diffusion); 5) we consider the usual slow combustion conditions when we can neglect the pressure
gradient and the viscous dissipation heat in the flame in comparison with the heat developed by the chemical
reaction; and 6) the back reaction of the flame on the hydrodynamics of the flow (ui), u{, p is not taken into ac-
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TABLE 1
T F 0/ @y/0,
(5.4) (4.8)—(4.11)
1 1,00 1,04
2 1,03 1,04
3 1,17 1,12
4 1,38 1,33

count. Estimates show [10] that this back effect is small, so that the intensity b={ujuj)/2 and the macroscale
L of the turbulence can serve in the first approximation as parameters of the problem (repeated indices imply
summation).

With these assumptions we can use the follow ing system of equations (in real units):

duylozx; = 0; ; (1.1)
Ou;/0t -+ u;0u;/0x; = —p~10ploz; + vo®u,/dx ;0x;; 1.2)
OT/ot + uw;0T/0z; = vo*T[0x;0x; + (Qlep)(T, n); (1.3)
/ot -+ u;on/dx; = vo®n/dx;dz; + (T, n). (1.4)
The expression
T =T~ @Qlepy or. T =Ty — (T4 —T) (1.5)

is one particular solution of (1.3) and (1.4). The subscript mr is used to denote quantities referring to the
final products of the combustion and "—" is used for the original mixture. In combustion problems (1.5) also
satisfies the boundary conditions and is therefore the first integral of (1.3) and (1.4). I what follows we con-
sider only this case so that we can take the reaction-rate function & to depend on temperature alone.

‘We divide the actual quantities into average and pulsating parts (T=(T) +T', uj = (uj) + u;-_, and so on) and
we apply the Reynolds averaging operation to (1.3), so that with the help of (1.1) we get

< >

aTI9t + Cusdd(T31dx; = voX TH/0x;0z; — + (Q/cp)( (7). (1.6)

The application of the averaged thermal balance equatlon to the study of a turbulent flame is complicated
by the presence of unknown quantities: the moment (ulT') and the average heat-production function (& (T)) .
For these we have to either use empirical connections (see, for example, [6-9]) with the average values or
write out the balance equations which describe their variation.

The equation for the moment (u{T') is

] <u'T' 10t + uz> 0 uiT? Djoz; + uiugy 8 <TI0z —
— v (Uil o0z A uiT' > 8 (usdl9x; + 2 ((Quif/0x;) (BT 19z;)> —

— o7 (P 0T 9z;y + & Cuwil”)> fox; + p " 0<p' T y10z; = (Qlep) {us®). 1.7

As in [4, 11], we close the system (1.7) by means of the following phenomenological hypotheses:
p P OT 10y = — e,V BT DiLg; ' (1.8)
v ((Oui/dz;) (AT" [325)y = — epv lwiT"DILE (1.9)
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9 <u; (wil")10z; = 0 (Dgd {uil” Y Joz;) oz, (1.10)
In these equations Ly represents the scale of the velocity —temperature correlation and it may differ from the
hydrodynamic Lp; b is the turbulence energy per unit mass and the ¢j are coefficients.

The turbulent diffusion coefficient Dy cannot in general be identified with the diffusion coefficient of the
pulsation kinetic energy D, ~ L,}/'b, since Dq can depend on the nature of the chemical heat-production pro-
cess,

The term -p~18 (p'T")/0xj isusually connected with the transport of energy in a nonuniform temperature
field by the pressure pulsations. It is probably important near the walls and is omitted in the treatment which
follows.

Final closure of the system of equations requires us to set up the balance equation for the temperature
pulsation (T'?) [this quantity occurs in (& (T)) and (uj®y:

8 ¢T"2)8t + Cuz> @ T2y ox; 4 2 uiT" > 0 (T j9x; —

— V02 T"2) [0z ;05 -+ 2v (BT [82;) (BT jox;)> +0 {uiT'2 ide; =2 (Qlep)<T'D>. (1.11)

In a similar way we get
(0T 102;) (OT" 102)> = — ¢}/ b(T"*Y/ Lo — cgv (T'2> |LE; (1.12)
0w T2 10 = 0 (Dod (T'2>/02;)/0z;, (1.13)

where Ly is the temperature scale of the turbulence and Dy is the turbulent diffusion coefficient of the tem-
perature pulsations.

§2, In order to determine the quantities (& (T)), (T'®), and (u{@) , which appear on the right sides of
(1.6), (1.7), and (1.11), we have to know the probability distribution functions of the temperature (velocity)
pulsations.

Since no reliable data exist on the form of this function, we have to start from the simplest pulsation
structure and assume that positive and negative pulsations T' with amplitude V' (T'® are equally likely. This
means that the probability distribution function can be written as

P(T") = 21 [8(F + VITB)+8(T — VT )], @.1)
where 6 (...) is the Dirac delta function.

The choice of this particular function makes our approach similar to the arithmetic averaging technique
used in [6-9].

In fact, we have from (2.1)

@M =[Oy + Ty Pryar =[0I VTS +0 (T — VT 2. (2.2)

In a similar way, we get for the moment {T&'),

By = [ TOETY+ PP (I = VTS [0 (T +VTB) — o (<15 —V T 2. (2.3)
We can calculate the moment (u{@)from the equation
@) = [wil’ (B (<Ty + )17 P (1) P, (uwil”) aT"a (i),

where the functions P, and P, are chosen to depend on the moments which contain the temperature pulsations,
so that we finally get arithmetic averaging, and in the limit when )/'{T"% <« <T> ,

(i) = uil D [ (T ~VTD) — (T =V )12V T, 2.4)
In particular, for small VZTES <({T> we get the following expansions from (2.2)-(2.4):
(D(T)y = DK TY) + (T B DK TH)/24T % + O(T” Rl @.5)
(T'®y = (T BdDTINTS + 0T 5); 2.6)
{ui®) = @O (T)ATKuil’ ) + 0 ({wiT'sy). . @.7)
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We might note that these same approximations [to the accuracy in (2.5)-(2.7)] also follow directly from
the expansions of the functions & ({(T) +T"), T'® ({T) +T'"),u;'®({T) +T') into series in powers of T' and sub-
sequent Reynolds averaging. This result is valid for any probability distribution function.

The deviation of the average reaction rate from the value at the mean temperature is governed according
to (2.5), mainly by the curvature of the function & ({T) ). This fact, which was noted in [8], is illustrated in Fig.
1 with a typical & (T) relationship for a first-order reaction (curve 1 is the temperature pulse; 2 is the pulsa-
tion of the reaction rate; 3 is the heat production in the laminar case; and 4 is the averaged heat-production
curve), When the reaction is perturbed in the high-temperature region (7, — 7 < T4) d*® /d{T)* < 0, the
average reaction rate becomes smaller than the rate at the mean temperature. In the temperature region
where d%/d{T)2> 0, the opposite effect occurs. Of course, continuous variations of temperature distort both
the & ({T)) profile (in comparison with the laminar case) and the flame structure. The energy relations (1.7),
(1.11) and (2.6), (2.7) show that the chemical reaction generates temperature (and therefore (u{T')) pulsations
in the temperature interval where the heat production increases and absorbs them in the final stage of the re-
action where as a result of the burning of the original components the reaction rate decreases with temperature.
Quantitative estimates of this effect are given below,

Equations (1.6), (1.7), and (1.11) together with the closure expressions (1.8)-(1.10), (1.12), (1.13), and
(2.2)-(2.4), fully describe the chemical reaction process in a turbulent flow of mixed gases. The statistical
moments which contain only the velocity (u{u'-) and the turbulence scales Lq and L5 are assumed o be
known functions of the coordinates and time. ft is possible to set up equations for these quantities; a method
for getting the equation for the scale is suggested, for example, in [12].

We do not elaborate here on the concept of the quantity I, although it is fairly clear that for the flow cen-
ter in a tube, L is proportional to the outer scale of the turbulence, i.e., to the diameter of the tube. In the
study of boundary-layer flows the significance of L might change [13].

It is important to note that the coefficients ¢y, c,, ¢3, and ¢, which occur in the factors in front of Ly and
Ly are determined by experiments and this to some extent compensates for the fact that the exact values of
1g and Lg are unknown.

When there is no similarity between the concentration and the temperature it becomes necessary to set
up additional equations for the statistical moments {7'2), @'T", (un').

§3. Considering the simplest case of a stationary flow where (u,) =u =const, {uyp ={up =0, {T) ={T(x)),
we arrive at equations which describe a one-dimensional model of a turbulent flame ({the analog of a normal
flame). This case occurs in tubes (or bheyond vortex plates) in the flow core where the walls have no effect and
in certain other situations of free turbulent flow. ~

In a coordinate system linked to the combustion surface, the quantity {u;) is simply the velocity of the
turbulent propagation of the flame ut. In the more general case where the flame is carried by the flow, the
value of {u;) =u-+ug, where u is the constant "drift" velocity. However, even here the average velocity u can
be eliminated by an appropriate transformation of coordinates. It is an important fact that in this approach no
restrictions are placed on the magnitude of the flow pulsation energy in comparison with the turbulent combus-
tion rate; i.e., vb canbe either greateror' less than ut and the level of the turbulence remains small compared
to the main flow, Vb < (up).

These assumptions lead to the following system of equations for the turbulent flame propagation:

d(xdT/dz — g)/dz — wdT/dz + (Qlep)Dy(T, |T']) = 0; (3.1)
Dyd?q/de® — wdgldz = [w? |dT/dz + ¢} bq/Lq — (Qlep) Ds (T, [T/ ) & (3.2)
0 (z;l?/ﬁ'z) 0 (Ll/a) 0(1§ 0 (1% 0 (qu/ T) ”
Dod®{T"2>]dx? — u,d {T"%>|dz = 2qdT/dx + ¢;V/b [T'[*/ L — (2Q/c0) Dux (T,|T"|) | T'}2, ©.3)
0 Liz 16%) 0( Ll/a) 0 (i) ) (1l) 0 ('Jr'm/rx)

where the order of each term is shown beneath that term.

In order to simplify the writing we omit the averaging sign and introduce the following new notation:
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Vs =W, g=<wT, T =V,
20, = O(T +|T") + ©(T — 1),
20, = O(T +{|T') — O(T — |1

Tig= Lylc,V'h, ti5= LslcsV b are the characteristic hydrodynamic times (the time for the displacement of
large moles); Ty is the characteristic time of the chemical reaction. Equations (3.2) and (3.3) are valid only
for the flow core, where

w/Dg €1, w/Ds&l, epuleLgV b <1, egulesLel/ b < 1. (3.4
The quantity 1 in (3.1) is retained for the possible limiting transition of the combustion in a laminar flow,

In the intermediate layer of the houndary flow (or in the viscous subflow), the inequalities (3.4) are not
satisfied and additional factors appear in (3.2) and (3.3): in place of Dy we have to write Dy (1 + ‘K/Dq), in place
of ¢y we have c¢,(1 +¢,x/c;Lg 1'b), in place of Dy we have Dg (1 +%/Dg) and in place of ¢; we write 1 +
enles LoV b).

The contributions of each term to the energy balance of the T' and u'T' pulsations are characterized by
the relative sizes attached to these terms in (3.2) and (3.3). A significant change in the various quantities oc-
curs at a distance onthe order of the width of the turbulent-flame front &, and it is moreover assumed that
Dy~ LV'b, Dp~Dg~Dg, ut~u' [this choice of ug gives an upper estimate of the second terms on the left sides

of (3.2) and (3.3), g~ LV bdTldx ~ LV bT./8, L~ Ly ~ Ls -

§4. We consider the case of turbulent combustion when L« 5, For small-scale turbulent combustion, &
can be considerably greater than the corresponding width of a laminar flame 6 ;: The extension of the turbulent
flame is causedby the increased heat transport and an additional extension (first-order reaction) by the shiftin the
maximum of the heat production toward lower temperatures [7]. The same is true for the characteristic reac-
tion time 7x: In a turbulent flame Tx can greatly exceed 7+—the reaction time at the maximum temperature
and the initial concentration.

It can be seen that for the present problem the transport of pulsation energy by turbulent diffusion and
convection is unimportant, so that an energy balance is set up between the creation of fluctuations at the gra-
dient of the average temperature, the dissipation, and the generation (absorption) by the chemical reactions.

Dropping the unimportant terms in (3.2) and (3.3), we have
lu'[2dT/dz — (QIep)a®yx (TII'DNT'| + eV b/Lg = O; (4.1)
qdT/dz — (QIep)| T"[*® s (T, T'1) + (c5V/ BI2Lo) T']2 = 0. (4.2)
If the scales and coefficients of the turbulence are related by the equation
2L = e, (4.3)
then a change in | T'| is similar to a change in q:
g = — [w)IT). ' (4.4)
The minus sign is chosen because the turbulent thermal conductivity is positive.

The flame propagation is described by Eqs. (3.1), (4.2), and (4.4); after some simple algebra these can be
transformed fo

AT AT = uju'l — @y TIT D/ |eo) THLQ — By (T (4.5)
[T'(Ty) = 0, |T'|(T-) = 0; (4.6)
dT/dz = |T'}/L — (Qicolw’|)D, 5 (T,IT7)). ‘ (4.7

_ The solution of the boundary-value problem (4.5), (4.6) gives the turbulent comhustion rate u; and (4.7)
gives the temperature distribution profile.

In order to compare our results with those in [7-9], we reformulate (4.5)-(4.7) in dimensionless variables:

dpldu = @u(u, p)/Ip + Fy @y (u, pjl — @5 4.8)

TThe treatment of the more general case, where (4.3) is not satisfied, does not present any fundamental dif-
ficulties and leads only to a more complicated final result.
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P = py =0; 4.9
u

du N
S 5=y mors (4.10)
0

20 (xs) = (u+ Fop)rexpl—6y (1 + Fop)/(L — 0 (u+ Fop))l & (1 — Fop)rexp[— 0y (u — Fop)/(1 — 0 (u— Fop))]  (4.11)
for 0 =u=<¢; when € <u< 1,(13(;*) =0 (the "+ sign is chosen for &+ and the "— " sign for & «).
The relation between the dimensioned and dimensionless quantities is
u=(Ty — DTy —T_), p=|T"/F(T, — T-),
®p = uth
Ty = p'—nz-lexp (E/RT,), z, =V LiuTTvy, & = z/x,,
Fy = Liz, =V tlty, v = L),
6=1—T_/T4, O =E(Ty—T_)/RT%.

The scale L is proportional to Lg,

L = Lglescs,

where the coefficient c; allows for a possible hydrodynamic anisotropy in the flow, b=cu’ For an isotropic
flow ¢ =V 3/2. The average value ¢4 =2.5 has been determined for a nonreacting flow [13]. In order to make
the comparison with the earlier results we have to remember that Fy = F/} ¢, o~ FIV3.

|2

§5. We consider the limiting case |T'|«T, where we can come to some definite qualitative conclusions.
Using the expansion (2.6) and Eq. (4.3) we get the gradient representations

q =W Ty=—Ljw|[1 — (Quy/cp)d®/AT 1-YdT /dz; (5.1)
|T'| = L1 — (Q1,/ep)d®/AT 1-YdT/dx]. (5.2)

In the absence of any chemical reactions (or when 7/Tx<«1) (5.1) and (5.2) give the classical result of
displacement path theory. The presence of chemical heat production increases the turbulent thermal conduc-
tivity v in that region of the flame where dé/dT > 0 and decreases it in the final stages of the reaction when
the quantity d&/dT (see Fig. 1) has changed sign. The quantity &« « in (4.8) reflects the role of the chemical
reaction in the thermal exchange inside the flame,

An approximate estimate of this effect on the turbulent combustion rate can be obtained from (4.8) by
neglecting the influence of the temperature pulsations on &, . After integrating (4.8) by the Zel'dovich method
we have for a first-order reaction that

ue — 0ot
o 5.3
of o 251 1+ 3—‘F2 (1— Bqu) e 0ot du. (6.3)

Making a power expansion of (5.3) and carrying out the integration, we get
0,/0, ~ I + Fi/39, ' (5.4)

where o, =V/2/8, is the laminar combustion rate. Equation (5.4) is valid when
F<eV3m4T, vl <129, (5.5)

The limit (5.5) represents an estimate which ig valid for | T'|«T. In general, it cannot be attained: As
L increases, there is a rise in the time for complete reaction resulting from the distortion of the heat-produc-
tion pulsations. Table 1 gives the results of calculations from (5.4) compared with those obtained from (4.8)-
(4.11). In using (4¢.11) we have neglected the effect of temperature pulsations on $* and have represented & « x
in the expanded form as valid for Fyp <« 1, as in (2.6) and (2.7).

It is necessary to distinguish between small-scale flames in free and boundary-layer turbulent flows (in
the latter case it is necessary to allow for the dependence of L on the distance from the wall, the variability of
the |u'| pulsations, and so on). Moreover, in the study of the turbulent combustion in the boundary-layer re-
gions (which in practice means in the intermediate region of the boundary layer [14, 15]) we cannot neglect the
quantity »/L}'% in comparison with unity.
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CERTAIN FORMULATIONS OF THREE-DIMENSIONAL
OPTIMIZATION PROBLEMS IN HYPERSONIC AERODYNAMICS

V. G. Dulov UDC 533.6.011:51.55

The fundamental configuration of a prospective hypersonic aircraft in which the active balance of forces
is created by a direct-flow air-breathing jet engine in liquid hydrogen with supersonic combustion is dictated
by its specific functioning conditions. Thus, in order to ensure the intake of air from the atmosphere during
flight in a rarefied medium the air-intake system should have a reasonably wide capture area, which will in
fact differ very little from the middle cross section of the whole aircraft. The nozzle (second element in the
engine system) should also have large dimensions. These engine elements should make a specific contribution
to the aerodynamics of the aircraft as a whole; they are characterized by large areas immersed in the flow, on
which the function of carrying surfaces will fo a certain extent be imposed. Hence we have the necessity of
asymmetry in the configurations of such surfaces and the associated essentially three-dimensional character
of the perturbed flow.

Let us consider the following presentation of the fundamental problem: in a three-dimensional space we
have two specified arbitrary closed contours I; and 1, (Fig. 1); the isobars of the unknown flow are based on
these contours, the pressures on the latter being specified as p, and p,, respectively. It is required to find the
stream surface passing through both contours and optimizing a certain integrated force characteristic of the
unknown surface. The problem is made specific by giving the functional of the mechanical (force) action.
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